7.5. Varieties of Monads

The IO monad has many, many effects, and is used for writing programs that need to interact with the world. It is described in its own section. Programs that use IO are essentially black boxes: they are typically not particularly amenable to verification.

Many algorithms are easiest to express with a much smaller set of effects. These effects can often be simulated; for example, mutable state can be simulated by passing around a tuple that contains both the program's value and the state. These simulated effects are easier to reason formally about, because they are defined using ordinary code rather than new language primitives.

The standard library provides abstractions for working with commonly-used effects. Many frequently-used effects fall into a small number of categories:

State monads have mutable state

Computations that have access to some data that may be modified by other parts of the computation use mutable state. State can be implemented in a variety of ways, described in the section on state monads and captured in the MonadState type class.

Reader monads are parameterized computations

Computations that can read the value of some parameter provided by a context exist in most programming languages, but many languages that feature state and exceptions as first-class features do not have built-in facilities for defining new parameterized computations. Typically, these computations are provided with a parameter value when invoked, and sometimes they can locally override it. Parameter values have dynamic extent: the value provided most recently in the call stack is the one that is used. They can be simulated by passing a value unchanged through a sequence of function calls; however, this technique can make code harder to read and introduces a risk that the values may be passed incorrectly to further calls by mistake. They can also be simulated using mutable state with a careful discipline surrounding the modification of the state. Monads that maintain a parameter, potentially allowing it to be overridden in a section of the call stack, are called reader monads. Reader monads are captured in the MonadReader type class. Additionally, reader monads that allow the parameter value to be locally overridden are captured in the MonadWithReader type class.

Exception monads have exceptions

Computations that may terminate early with an exceptional value use exceptions. They are typically modeled with a sum type that has a constructor for ordinary termination and a constructor for early termination with errors. Exception monads are described in the section on exception monads, and captured in the MonadExcept type class.

7.5.1. Monad Type Classes

Using type classes like MonadState and MonadExcept allow client code to be polymorphic with respect to monads. Together with automatic lifting, this allows programs to be re-usable in many different monads and makes them more robust to refactoring.

It's important to be aware that effects in a monad may not interact in only one way. For example, a monad with state and exceptions may or may not roll back state changes when an exception is thrown. If this matters for the correctness of a function, then it should use a more specific signature.

Effect Ordering

The function sumNonFives adds the contents of a list using a state monad, terminating early if it encounters a 5.

def sumNonFives {m} [Monad m] [MonadState Nat m] [MonadExcept String m] (xs : List Nat) : m Unit := do for x in xs do if x == 5 then throw "Five was encountered" else modify (· + x)

Running it in one monad returns the state at the time that 5 was encountered:

(Except.error "Five was encountered", 10)#eval sumNonFives (m := ExceptT String (StateM Nat)) [1, 2, 3, 4, 5, 6] |>.run |>.run 0
(Except.error "Five was encountered", 10)

In another, the state is discarded:

Except.error "Five was encountered"#eval sumNonFives (m := StateT Nat (Except String)) [1, 2, 3, 4, 5, 6] |>.run 0
Except.error "Five was encountered"

In the second case, an exception handler would roll back the state to its value at the start of the Lean.Parser.Term.termTry : termtry. The following function is thus incorrect:

/-- Computes the sum of the non-5 prefix of a list. -/ def sumUntilFive {m} [Monad m] [MonadState Nat m] [MonadExcept String m] (xs : List Nat) : m Nat := do MonadState.set 0 try sumNonFives xs catch _ => pure () get

In one monad, the answer is correct:

Except.ok 10#eval sumUntilFive (m := ExceptT String (StateM Nat)) [1, 2, 3, 4, 5, 6] |>.run |>.run' 0
Except.ok 10

In the other, it is not:

Except.ok 0#eval sumUntilFive (m := StateT Nat (Except String)) [1, 2, 3, 4, 5, 6] |>.run' 0
Except.ok 0

A single monad may support multiple version of the same effect. For example, there might be a mutable Nat and a mutable String or two separate reader parameters. As long as they have different types, it should be convenient to access both. In typical use, some monadic operations that are overloaded in type classes have type information available for instance synthesis, while others do not. For example, the argument passed to set determines the type of the state to be used, while get takes no such argument. The type information present in applications of set can be used to pick the correct instance when multiple states are available, which suggests that the type of the mutable state should be an input parameter or semi-output parameter so that it can be used to select instances. The lack of type information present in uses of get, on the other hand, suggests that the type of the mutable state should be an output parameter in MonadState, so type class synthesis determines the state's type from the monad itself.

This dichotomy is solved by having two versions of many of the effect type classes. The version with a semi-output parameter has the suffix -Of, and its operations take types explicitly as needed. Examples include MonadStateOf, MonadReaderOf, and MonadExceptOf. The operations with explicit type parameters have names ending in -The, such as getThe, readThe, and tryCatchThe. The name of the version with an output parameter is undecorated. The standard library exports a mix of operations from the -Of and undecorated versions of each type class, based on what has good inference behavior in typical use cases.

Operation

From Class

Notes

get

MonadState

Output parameter improves type inference

set

MonadStateOf

Semi-output parameter uses type information from set's argument

modify

MonadState

Output parameter is needed to allow functions without annotations

modifyGet

MonadState

Output parameter is needed to allow functions without annotations

read

MonadReader

Output parameter is needed due to lack of type information from arguments

readThe

MonadReaderOf

Semi-output parameter uses the provided type to guide synthesis

withReader

MonadWithReader

Output parameter avoids the need for type annotations on the function

withTheReader

MonadWithReaderOf

Semi-output parameter uses provided type to guide synthesis

throw

MonadExcept

Output parameter enables the use of constructor dot notation for the exception

throwThe

MonadExceptOf

Semi-output parameter uses provided type to guide synthesis

tryCatch

MonadExcept

Output parameter enables the use of constructor dot notation for the exception

tryCatchThe

MonadExceptOf

Semi-output parameter uses provided type to guide synthesis

State Types

The state monad M has two separate states: a Nat and a String.

abbrev M := StateT Nat (StateM String)

Because get is an alias for MonadState.get, the state type is an output parameter. This means that Lean selects a state type automatically, in this case the one from the outermost monad transformer:

get : M Nat#check (get : M _)
get : M Nat

Only the outermost may be used, because the type of the state is an output parameter.

#check (failed to synthesize MonadState String M Additional diagnostic information may be available using the `set_option diagnostics true` command.get : M String)
failed to synthesize
  MonadState String M
Additional diagnostic information may be available using the `set_option diagnostics true` command.

Providing the state type explicitly using getThe from MonadStateOf allows both states to be read.

(getThe String, getThe Nat) : M String × M Nat#check ((getThe String, getThe Nat) : M String × M Nat)
(getThe String, getThe Nat) : M String × M Nat

Setting a state works for either type, because the state type is a semi-output parameter on MonadStateOf.

set 4 : M PUnit#check (set 4 : M Unit)
set 4 : M PUnit
set "Four" : M PUnit#check (set "Four" : M Unit)
set "Four" : M PUnit

7.5.2. Monad Transformers🔗

A monad transformer is a function that, when provided with a monad, gives back a new monad. Typically, this new monad has all the effects of the original monad along with some additional ones.

A monad transformer consists of the following:

  • A function T that constructs the new monad's type from an existing monad

  • A run function that adapts a T m α into some variant of m, often requiring additional parameters and returning a more specific type under m

  • An instance of [Monad m] Monad (T m) that allows the transformed monad to be used as a monad

  • An instance of MonadLift that allows the original monad's code to be used in the transformed monad

  • If possible, an instance of MonadControl m (T m) that allows actions from the transformed monad to be used in the original monad

Typically, a monad transformer also provides instances of one or more type classes that describe the effects that it introduces. The transformer's Monad and MonadLift instances make it practical to write code in the transformed monad, while the type class instances allow the transformed monad to be used with polymorphic functions.

The Identity Monad Transformer

The identity monad transformer neither adds nor removes capabilities to the transformed monad. Its definition is the identity function, suitably specialized:

def IdT (m : Type u Type v) : Type u Type v := m

Similarly, the run function requires no additional arguments and just returns an m α:

def IdT.run (act : IdT m α) : m α := act

The monad instance relies on the monad instance for the transformed monad, selecting it via type ascriptions:

instance [Monad m] : Monad (IdT m) where pure x := (pure x : m _) bind x f := (x >>= f : m _)

Because IdT m is definitionally equal to m, the MonadLift m (IdT m) instance doesn't need to modify the action being lifted:

instance : MonadLift m (IdT m) where monadLift x := x

The MonadControl instance is similarly simple.

instance [Monad m] : MonadControl m (IdT m) where stM α := α liftWith f := f (fun x => Id.run <| pure x) restoreM v := v

The Lean standard library provides transformer versions of many different monads, including ReaderT, ExceptT, and StateT, along with variants using other representations such as StateCpsT, StateRefT, and ExceptCpsT. Additionally, the EStateM monad is equivalent to combining ExceptT and StateT, but it can use a more specialized representation to improve performance.

7.5.3. Identity

The identity monad Id has no effects whatsoever. Both Id and the corresponding implementation of pure are the identity function, and bind is reversed function application. The identity monad has two primary use cases:

  1. It can be the type of a Lean.Parser.Term.do : termdo block that implements a pure function with local effects.

  2. It can be placed at the bottom of a stack of monad transformers.

🔗def
Id.{u} (type : Type u) : Type u
🔗def
Id.run.{u_1} {α : Type u_1} (x : Id α) : α
Local Effects with the Identity Monad

This code block implements a countdown procedure by using simulated local mutability in the identity monad.

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]#eval Id.run do let mut xs := [] for x in [0:10] do xs := x :: xs pure xs
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
🔗def
Id.hasBind.{u_1} : Bind Id

7.5.4. State🔗

State monads provide access to a mutable value. The underlying implementation may a tuple to simulate mutability, or it may use something like ST.Ref to ensure mutation. Even those implementations that use a tuple may in fact use mutation at run-time due to Lean's use of mutation when there are unique references to values, but this requires a programming style that prefers modify and modifyGet over get and set.

7.5.4.1. General State API

🔗type class
MonadState.{u, v} (σ : outParam (Type u))
    (m : Type uType v) : Type (max (u + 1) v)

Similar to MonadStateOf, but σ is an outParam for convenience.

Instance Constructor

MonadState.mk.{u, v}

Methods

get : m σ

( get) : σ gets the state out of a monad m.

set : σm PUnit

set (s : σ) replaces the state with value s.

modifyGet : {α : Type u} → (σα × σ) → m α

modifyGet (f : σ α × σ) applies f to the current state, replaces the state with the return value, and returns a computed value.

It is equivalent to do let (a, s) := f ( get); put s; pure a, but modifyGet f may be preferable because the former does not use the state linearly (without sufficient inlining).

🔗def
MonadState.get.{u, v} {σ : outParam (Type u)}
  {m : Type uType v}
  [self : MonadState σ m] : m σ

( get) : σ gets the state out of a monad m.

🔗def
modify.{u, v} {σ : Type u} {m : Type uType v}
    [MonadState σ m] (f : σσ) : m PUnit

modify (f : σ σ) applies the function f to the state.

It is equivalent to do set (f ( get)), but modify f may be preferable because the former does not use the state linearly (without sufficient inlining).

🔗def
MonadState.modifyGet.{u, v}
  {σ : outParam (Type u)} {m : Type uType v}
  [self : MonadState σ m] {α : Type u} :
  (σα × σ) → m α

modifyGet (f : σ α × σ) applies f to the current state, replaces the state with the return value, and returns a computed value.

It is equivalent to do let (a, s) := f ( get); put s; pure a, but modifyGet f may be preferable because the former does not use the state linearly (without sufficient inlining).

🔗def
getModify.{u, v} {σ : Type u}
    {m : Type uType v} [MonadState σ m]
    (f : σσ) : m σ

getModify f gets the state, applies function f, and returns the old value of the state. It is equivalent to get <* modify f but may be more efficient.

🔗type class
MonadStateOf.{u, v} (σ : semiOutParam (Type u))
    (m : Type uType v) : Type (max (u + 1) v)

An implementation of MonadState. In contrast to the Haskell implementation, we use overlapping instances to derive instances automatically from monadLift.

Instance Constructor

MonadStateOf.mk.{u, v}

Methods

get : m σ

( get) : σ gets the state out of a monad m.

set : σm PUnit

set (s : σ) replaces the state with value s.

modifyGet : {α : Type u} → (σα × σ) → m α

modifyGet (f : σ α × σ) applies f to the current state, replaces the state with the return value, and returns a computed value.

It is equivalent to do let (a, s) := f ( get); put s; pure a, but modifyGet f may be preferable because the former does not use the state linearly (without sufficient inlining).

🔗def
getThe.{u, v} (σ : Type u) {m : Type uType v}
    [MonadStateOf σ m] : m σ

Like get, but with σ explicit. This is useful if a monad supports MonadStateOf for multiple different types σ.

🔗def
modifyThe.{u, v} (σ : Type u)
    {m : Type uType v} [MonadStateOf σ m]
    (f : σσ) : m PUnit

Like modify, but with σ explicit. This is useful if a monad supports MonadStateOf for multiple different types σ.

🔗def
modifyGetThe.{u, v} {α : Type u} (σ : Type u)
    {m : Type uType v} [MonadStateOf σ m]
    (f : σα × σ) : m α

Like modifyGet, but with σ explicit. This is useful if a monad supports MonadStateOf for multiple different types σ.

7.5.4.2. Tuple-Based State Monads

The tuple-based state monads represent a computation with states that have type σ yielding values of type α as functions that take a starting state and yield a value paired with a final state, e.g. σ α × σ. The Monad operations thread the state correctly through the computation.

🔗def
StateM.{u} (σ α : Type u) : Type u
🔗def
StateT.{u, v} (σ : Type u) (m : Type uType v)
    (α : Type u) : Type (max u v)
🔗def
StateT.run.{u, v} {σ : Type u}
    {m : Type uType v} {α : Type u}
    (x : StateT σ m α) (s : σ) : m (α × σ)
🔗def
StateT.get.{u, v} {σ : Type u}
    {m : Type uType v} [Monad m]
    : StateT σ m σ
🔗def
StateT.set.{u, v} {σ : Type u}
    {m : Type uType v} [Monad m]
    : σStateT σ m PUnit
🔗def
StateT.orElse.{u, v} {σ : Type u}
    {m : Type uType v} [Alternative m]
    {α : Type u} (x₁ : StateT σ m α)
    (x₂ : UnitStateT σ m α) : StateT σ m α
🔗def
StateT.failure.{u, v} {σ : Type u}
    {m : Type uType v} [Alternative m]
    {α : Type u} : StateT σ m α
🔗def
StateT.run'.{u, v} {σ : Type u}
    {m : Type uType v} [Functor m]
    {α : Type u} (x : StateT σ m α) (s : σ)
    : m α
🔗def
StateT.bind.{u, v} {σ : Type u}
    {m : Type uType v} [Monad m]
    {α β : Type u} (x : StateT σ m α)
    (f : αStateT σ m β) : StateT σ m β
🔗def
StateT.modifyGet.{u, v} {σ : Type u}
    {m : Type uType v} [Monad m] {α : Type u}
    (f : σα × σ) : StateT σ m α
🔗def
StateT.lift.{u, v} {σ : Type u}
    {m : Type uType v} [Monad m] {α : Type u}
    (t : m α) : StateT σ m α
🔗def
StateT.map.{u, v} {σ : Type u}
    {m : Type uType v} [Monad m]
    {α β : Type u} (f : αβ)
    (x : StateT σ m α) : StateT σ m β
🔗def
StateT.pure.{u, v} {σ : Type u}
    {m : Type uType v} [Monad m] {α : Type u}
    (a : α) : StateT σ m α

7.5.4.3. State Monads in Continuation Passing Style

Continuation-passing-style state monads represent stateful computations as functions that, for any type whatsoever, take an initial state and a continuation (modeled as a function) that accepts a value and an updated state. An example of such a type is (δ : Type u) σ (α σ δ) δ, though StateCpsT is a transformer that can be applied to any monad. State monads in continuation passing style have different performance characteristics than tuple-based state monads; for some applications, it may be worth benchmarking them.

🔗def
StateCpsT.{u, v} (σ : Type u)
    (m : Type uType v) (α : Type u)
    : Type (max (u + 1) v)
🔗def
StateCpsT.lift.{u, v} {α σ : Type u}
    {m : Type uType v} [Monad m] (x : m α)
    : StateCpsT σ m α
🔗def
StateCpsT.runK.{u, v} {α σ : Type u}
    {m : Type uType v} {β : Type u}
    (x : StateCpsT σ m α) (s : σ)
    (k : ασm β) : m β
🔗def
StateCpsT.run'.{u, v} {α σ : Type u}
    {m : Type uType v} [Monad m]
    (x : StateCpsT σ m α) (s : σ) : m α
🔗def
StateCpsT.run.{u, v} {α σ : Type u}
    {m : Type uType v} [Monad m]
    (x : StateCpsT σ m α) (s : σ) : m (α × σ)

7.5.4.4. State Monads from Mutable References

The monad StateRefT σ m is a specialized state monad transformer that can be used when m is a monad to which ST computations can be lifted. It implements the operations of MonadState using an ST.Ref, rather than pure functions. This ensures that mutation is actually used at run time.

ST and EST require a phantom type parameter that's used together with runST's polymorphic function argument to encapsulate mutability. Rather than require this as a parameter to the transformer, an auxiliary type class STWorld is used to propagate it directly from m.

The transformer itself is defined as a syntax extension and an elaborator, rather than an ordinary function. This is because STWorld has no methods: it exists only to propagate information from the inner monad to the transformed monad. Nonetheless, its instances are terms; keeping them around could lead to unnecessarily large types.

🔗type class
STWorld (σ : outParam Type) (m : TypeType)
    : Type

Instance Constructor

STWorld.mk

Methods

syntax

The syntax for StateRefT σ m accepts two arguments:

term ::= ...
    | StateRefT term (macroDollarArg
       | term)

Its elaborator synthesizes an instance of STWorld ω m to ensure that m supports mutable references. Having discovered the value of ω, it then produces the term StateRefT' ω σ m, discarding the synthesized instance.

🔗def
StateRefT' (ω σ : Type) (m : TypeType)
    (α : Type) : Type
🔗def
StateRefT'.get {ω σ : Type} {m : TypeType}
    [MonadLiftT (ST ω) m] : StateRefT' ω σ m σ
🔗def
StateRefT'.set {ω σ : Type} {m : TypeType}
    [MonadLiftT (ST ω) m] (s : σ)
    : StateRefT' ω σ m PUnit
🔗def
StateRefT'.modifyGet {ω σ : Type}
    {m : TypeType} {α : Type}
    [MonadLiftT (ST ω) m] (f : σα × σ)
    : StateRefT' ω σ m α
🔗def
StateRefT'.run {ω σ : Type} {m : TypeType}
    [Monad m] [MonadLiftT (ST ω) m] {α : Type}
    (x : StateRefT' ω σ m α) (s : σ) : m (α × σ)
🔗def
StateRefT'.run' {ω σ : Type} {m : TypeType}
    [Monad m] [MonadLiftT (ST ω) m] {α : Type}
    (x : StateRefT' ω σ m α) (s : σ) : m α
🔗def
StateRefT'.lift {ω σ : Type} {m : TypeType}
    {α : Type} (x : m α) : StateRefT' ω σ m α

7.5.5. Reader🔗

🔗type class
MonadReader.{u, v} (ρ : outParam (Type u))
    (m : Type uType v) : Type v

Similar to MonadReaderOf, but ρ is an outParam for convenience.

Instance Constructor

MonadReader.mk.{u, v}

Methods

read : m ρ

( read) : ρ reads the state out of monad m.

🔗type class
MonadReaderOf.{u, v} (ρ : semiOutParam (Type u))
    (m : Type uType v) : Type v

An implementation of Haskell's MonadReader (sans functional dependency; see also MonadReader in this module). It does not contain local because this function cannot be lifted using monadLift. local is instead provided by the MonadWithReader class as withReader.

Note: This class can be seen as a simplification of the more "principled" definition

class MonadReaderOf (ρ : Type u) (n : Type u → Type u) where
  lift {α : Type u} : ({m : Type u → Type u} → [Monad m] → ReaderT ρ m α) → n α

Instance Constructor

MonadReaderOf.mk.{u, v}

Methods

read : m ρ

( read) : ρ reads the state out of monad m.

🔗def
readThe.{u, v} (ρ : Type u)
    {m : Type uType v} [MonadReaderOf ρ m]
    : m ρ

Like read, but with ρ explicit. This is useful if a monad supports MonadReaderOf for multiple different types ρ.

🔗type class
MonadWithReader.{u, v} (ρ : outParam (Type u))
    (m : Type uType v) : Type (max (u + 1) v)

Similar to MonadWithReaderOf, but ρ is an outParam for convenience.

Instance Constructor

MonadWithReader.mk.{u, v}

Methods

withReader : {α : Type u} → (ρρ) → m αm α

withReader (f : ρ ρ) (x : m α) : m α runs the inner x : m α inside a modified context after applying the function f : ρ ρ.

🔗type class
MonadWithReaderOf.{u, v}
    (ρ : semiOutParam (Type u))
    (m : Type uType v) : Type (max (u + 1) v)

MonadWithReaderOf ρ adds the operation withReader : (ρ ρ) m α m α. This runs the inner x : m α inside a modified context after applying the function f : ρ ρ. In addition to ReaderT itself, this operation lifts over most monad transformers, so it allows us to apply withReader to monads deeper in the stack.

Instance Constructor

MonadWithReaderOf.mk.{u, v}

Methods

withReader : {α : Type u} → (ρρ) → m αm α

withReader (f : ρ ρ) (x : m α) : m α runs the inner x : m α inside a modified context after applying the function f : ρ ρ.

🔗def
withTheReader.{u, v} (ρ : Type u)
    {m : Type uType v}
    [MonadWithReaderOf ρ m] {α : Type u}
    (f : ρρ) (x : m α) : m α

Like withReader, but with ρ explicit. This is useful if a monad supports MonadWithReaderOf for multiple different types ρ.

🔗def
ReaderT.{u, v} (ρ : Type u)
    (m : Type uType v) (α : Type u)
    : Type (max u v)

An implementation of Haskell's ReaderT. This is a monad transformer which equips a monad with additional read-only state, of type ρ.

🔗def
ReaderM.{u} (ρ α : Type u) : Type u
🔗def
ReaderT.adapt.{u, v} {ρ : Type u}
    {m : Type uType v} {ρ' α : Type u}
    (f : ρ'ρ)
    : ReaderT ρ m αReaderT ρ' m α

adapt (f : ρ' ρ) precomposes function f on the reader state of a ReaderT ρ, yielding a ReaderT ρ'.

🔗def
ReaderT.read.{u, v} {ρ : Type u}
    {m : Type uType v} [Monad m]
    : ReaderT ρ m ρ

( read) : ρ gets the read-only state of a ReaderT ρ.

🔗def
ReaderT.run.{u, v} {ρ : Type u}
    {m : Type uType v} {α : Type u}
    (x : ReaderT ρ m α) (r : ρ) : m α

If x : ReaderT ρ m α and r : ρ, then x.run r : ρ runs the monad with the given reader state.

🔗def
ReaderT.orElse.{u_1, u_2}
    {m : Type u_1Type u_2} {ρ α : Type u_1}
    [Alternative m] (x₁ : ReaderT ρ m α)
    (x₂ : UnitReaderT ρ m α) : ReaderT ρ m α
🔗def
ReaderT.bind.{u, v} {ρ : Type u}
    {m : Type uType v} [Monad m]
    {α β : Type u} (x : ReaderT ρ m α)
    (f : αReaderT ρ m β) : ReaderT ρ m β

The bind operation of the ReaderT monad.

🔗def
ReaderT.failure.{u_1, u_2}
    {m : Type u_1Type u_2} {ρ α : Type u_1}
    [Alternative m] : ReaderT ρ m α
🔗def
ReaderT.pure.{u, v} {ρ : Type u}
    {m : Type uType v} [Monad m] {α : Type u}
    (a : α) : ReaderT ρ m α

The pure operation of the ReaderT monad.

7.5.6. Option🔗

Ordinarily, Option is thought of as data, similarly to a nullable type. It can also be considered as a monad, and thus a way of performing computations. The Option monad and its transformer OptionT can be understood as describing computations that may terminate early, discarding the results. Callers can check for early termination and invoke a fallback if desired using OrElse.orElse or by treating it as a MonadExcept Unit.

🔗def
OptionT.{u, v} (m : Type uType v)
    (α : Type u) : Type v
🔗def
OptionT.run.{u, v} {m : Type uType v}
    {α : Type u} (x : OptionT m α)
    : m (Option α)
🔗def
OptionT.lift.{u, v} {m : Type uType v}
    [Monad m] {α : Type u} (x : m α)
    : OptionT m α
🔗def
OptionT.mk.{u, v} {m : Type uType v}
    {α : Type u} (x : m (Option α))
    : OptionT m α
🔗def
OptionT.pure.{u, v} {m : Type uType v}
    [Monad m] {α : Type u} (a : α) : OptionT m α
🔗def
OptionT.bind.{u, v} {m : Type uType v}
    [Monad m] {α β : Type u} (x : OptionT m α)
    (f : αOptionT m β) : OptionT m β
🔗def
OptionT.fail.{u, v} {m : Type uType v}
    [Monad m] {α : Type u} : OptionT m α
🔗def
OptionT.orElse.{u, v} {m : Type uType v}
    [Monad m] {α : Type u} (x : OptionT m α)
    (y : UnitOptionT m α) : OptionT m α
🔗def
OptionT.tryCatch.{u, v} {m : Type uType v}
    [Monad m] {α : Type u} (x : OptionT m α)
    (handle : UnitOptionT m α) : OptionT m α

7.5.7. Exceptions🔗

Exception monads describe computations that terminate early (fail). Failing computations provide their caller with an exception value that describes why they failed. In other words, computations either return a value or an exception. The inductive type Except captures this pattern, and is itself a monad.

7.5.7.1. Exceptions

🔗inductive type
Except.{u, v} (ε : Type u) (α : Type v)
    : Type (max u v)

Except ε α is a type which represents either an error of type ε, or an "ok" value of type α. The error type is listed first because Except ε : Type Type is a Monad: the pure operation is ok and the bind operation returns the first encountered error.

Constructors

error.{u, v} {ε : Type u} {α : Type v} : εExcept ε α

A failure value of type ε

ok.{u, v} {ε : Type u} {α : Type v} : αExcept ε α

A success value of type α

🔗def
Except.pure.{u, u_1} {ε : Type u} {α : Type u_1}
    (a : α) : Except ε α
🔗def
Except.bind.{u, u_1, u_2} {ε : Type u}
    {α : Type u_1} {β : Type u_2}
    (ma : Except ε α) (f : αExcept ε β)
    : Except ε β
🔗def
Except.map.{u, u_1, u_2} {ε : Type u}
    {α : Type u_1} {β : Type u_2} (f : αβ)
    : Except ε αExcept ε β
🔗def
Except.mapError.{u, u_1, u_2} {ε : Type u}
    {ε' : Type u_1} {α : Type u_2} (f : εε')
    : Except ε αExcept ε' α
🔗def
Except.tryCatch.{u, u_1} {ε : Type u}
    {α : Type u_1} (ma : Except ε α)
    (handle : εExcept ε α) : Except ε α
🔗def
Except.orElseLazy.{u, u_1} {ε : Type u}
    {α : Type u_1} (x : Except ε α)
    (y : UnitExcept ε α) : Except ε α
🔗def
Except.isOk.{u, u_1} {ε : Type u} {α : Type u_1}
    : Except ε αBool
🔗def
Except.toOption.{u, u_1} {ε : Type u}
    {α : Type u_1} : Except ε αOption α
🔗def
Except.toBool.{u, u_1} {ε : Type u}
    {α : Type u_1} : Except ε αBool

Returns true if the value is Except.ok, false otherwise.

7.5.7.2. Type Class

🔗type class
MonadExcept.{u, v, w} (ε : outParam (Type u))
    (m : Type vType w)
    : Type (max (max u (v + 1)) w)

Similar to MonadExceptOf, but ε is an outParam for convenience.

Instance Constructor

MonadExcept.mk.{u, v, w}

Methods

throw : {α : Type v} → εm α

throw : ε m α "throws an error" of type ε to the nearest enclosing catch block.

tryCatch : {α : Type v} → m α → (εm α) → m α

tryCatch (body : m α) (handler : ε m α) : m α will catch any errors in body and pass the resulting error to handler. Errors in handler will not be caught.

🔗def
MonadExcept.ofExcept.{u_1, u_2, u_3}
    {m : Type u_1Type u_2} {ε : Type u_3}
    {α : Type u_1} [Monad m] [MonadExcept ε m]
    : Except ε αm α

"Unwraps" an Except ε α to get the α, or throws the exception otherwise.

🔗def
MonadExcept.orElse.{u, v, w} {ε : Type u}
    {m : Type vType w} [MonadExcept ε m]
    {α : Type v} (t₁ : m α) (t₂ : Unitm α)
    : m α

A MonadExcept can implement t₁ <|> t₂ as try t₁ catch _ => t₂.

🔗def
MonadExcept.orelse'.{u, v, w} {ε : Type u}
  {m : Type vType w} [MonadExcept ε m]
  {α : Type v} (t₁ t₂ : m α)
  (useFirstEx : Bool := true) : m α

Alternative orelse operator that allows to select which exception should be used. The default is to use the first exception since the standard orelse uses the second.

🔗type class
MonadExceptOf.{u, v, w}
    (ε : semiOutParam (Type u))
    (m : Type vType w)
    : Type (max (max u (v + 1)) w)

An implementation of Haskell's MonadError class. A MonadError ε m is a monad m with two operations:

  • throw : ε m α "throws an error" of type ε to the nearest enclosing catch block

  • tryCatch (body : m α) (handler : ε m α) : m α will catch any errors in body and pass the resulting error to handler. Errors in handler will not be caught.

The try ... catch e => ... syntax inside do blocks is sugar for the tryCatch operation.

Instance Constructor

MonadExceptOf.mk.{u, v, w}

Methods

throw : {α : Type v} → εm α

throw : ε m α "throws an error" of type ε to the nearest enclosing catch block.

tryCatch : {α : Type v} → m α → (εm α) → m α

tryCatch (body : m α) (handler : ε m α) : m α will catch any errors in body and pass the resulting error to handler. Errors in handler will not be caught.

🔗def
throwThe.{u, v, w} (ε : Type u)
    {m : Type vType w} [MonadExceptOf ε m]
    {α : Type v} (e : ε) : m α

This is the same as throw, but allows specifying the particular error type in case the monad supports throwing more than one type of error.

🔗def
tryCatchThe.{u, v, w} (ε : Type u)
    {m : Type vType w} [MonadExceptOf ε m]
    {α : Type v} (x : m α) (handle : εm α)
    : m α

This is the same as tryCatch, but allows specifying the particular error type in case the monad supports throwing more than one type of error.

7.5.7.3. “Finally” Computations

🔗type class
MonadFinally.{u, v} (m : Type uType v)
    : Type (max (u + 1) v)

Instance Constructor

MonadFinally.mk.{u, v}

Methods

tryFinally' : {α β : Type u} → m α → (Option αm β) → m (α × β)

tryFinally' x f runs x and then the "finally" computation f. When x succeeds with a : α, f (some a) is returned. If x fails for m's definition of failure, f none is returned. Hence tryFinally' can be thought of as performing the same role as a finally block in an imperative programming language.

7.5.7.4. Transformer

🔗def
ExceptT.{u, v} (ε : Type u)
    (m : Type uType v) (α : Type u) : Type v
🔗def
ExceptT.lift.{u, v} {ε : Type u}
    {m : Type uType v} [Monad m] {α : Type u}
    (t : m α) : ExceptT ε m α
🔗def
ExceptT.run.{u, v} {ε : Type u}
    {m : Type uType v} {α : Type u}
    (x : ExceptT ε m α) : m (Except ε α)
🔗def
ExceptT.pure.{u, v} {ε : Type u}
    {m : Type uType v} [Monad m] {α : Type u}
    (a : α) : ExceptT ε m α
🔗def
ExceptT.bind.{u, v} {ε : Type u}
    {m : Type uType v} [Monad m]
    {α β : Type u} (ma : ExceptT ε m α)
    (f : αExceptT ε m β) : ExceptT ε m β
🔗def
ExceptT.bindCont.{u, v} {ε : Type u}
    {m : Type uType v} [Monad m]
    {α β : Type u} (f : αExceptT ε m β)
    : Except ε αm (Except ε β)
🔗def
ExceptT.tryCatch.{u, v} {ε : Type u}
    {m : Type uType v} [Monad m] {α : Type u}
    (ma : ExceptT ε m α)
    (handle : εExceptT ε m α) : ExceptT ε m α
🔗def
ExceptT.mk.{u, v} {ε : Type u}
    {m : Type uType v} {α : Type u}
    (x : m (Except ε α)) : ExceptT ε m α
🔗def
ExceptT.map.{u, v} {ε : Type u}
    {m : Type uType v} [Monad m]
    {α β : Type u} (f : αβ)
    (x : ExceptT ε m α) : ExceptT ε m β
🔗def
ExceptT.adapt.{u, v} {ε : Type u}
    {m : Type uType v} [Monad m]
    {ε' α : Type u} (f : εε')
    : ExceptT ε m αExceptT ε' m α

7.5.7.5. Exception Monads in Continuation Passing Style

Continuation-passing-style exception monads represent potentially-failing computations as functions that take success and failure continuations, both of which return the same type, returning that type. They must work for any return type. An example of such a type is (β : Type u) (α β) (ε β) β. ExceptCpsT is a transformer that can be applied to any monad, so ExceptCpsT ε m α is actually defined as (β : Type u) (α m β) (ε m β) m β. Exception monads in continuation passing style have different performance characteristics than Except-based state monads; for some applications, it may be worth benchmarking them.

🔗def
ExceptCpsT.{u, v} (ε : Type u)
    (m : Type uType v) (α : Type u)
    : Type (max (u + 1) v)
🔗def
ExceptCpsT.runCatch.{u_1, u_2}
    {m : Type u_1Type u_2} {α : Type u_1}
    [Monad m] (x : ExceptCpsT α m α) : m α
🔗def
ExceptCpsT.runK.{u, u_1} {m : Type uType u_1}
    {β ε α : Type u} (x : ExceptCpsT ε m α)
    (s : ε) (ok : αm β) (error : εm β)
    : m β
🔗def
ExceptCpsT.run.{u, u_1} {m : Type uType u_1}
    {ε α : Type u} [Monad m]
    (x : ExceptCpsT ε m α) : m (Except ε α)
🔗def
ExceptCpsT.lift.{u_1, u_2}
    {m : Type u_1Type u_2} {α ε : Type u_1}
    [Monad m] (x : m α) : ExceptCpsT ε m α

7.5.8. Combined Error and State Monads

The EStateM monad has both exceptions and mutable state. EStateM ε σ α is logically equivalent to ExceptT ε (StateM σ) α. While ExceptT ε (StateM σ) evaluates to the type σ Except ε α × σ, the type EStateM ε σ α evaluates to σ EStateM.Result ε σ α. EStateM.Result is an inductive type that's very similar to Except, except both constructors have an additional field for the state. In compiled code, this representation removes one level of indirection from each monadic bind.

🔗def
EStateM.{u} (ε σ α : Type u) : Type u

EStateM ε σ is a combined error and state monad, equivalent to ExceptT ε (StateM σ) but more efficient.

🔗inductive type
EStateM.Result.{u} (ε σ α : Type u) : Type u

Result ε σ α is equivalent to Except ε α × σ, but using a single combined inductive yields a more efficient data representation.

Constructors

ok.{u} {ε σ α : Type u} : ασEStateM.Result ε σ α

A success value of type α, and a new state σ.

error.{u} {ε σ α : Type u} : εσEStateM.Result ε σ α

A failure value of type ε, and a new state σ.

🔗def
EStateM.run.{u} {ε σ α : Type u}
    (x : EStateM ε σ α) (s : σ)
    : EStateM.Result ε σ α

Execute an EStateM on initial state s to get a Result.

🔗def
EStateM.run'.{u} {ε σ α : Type u}
    (x : EStateM ε σ α) (s : σ) : Option α

Execute an EStateM on initial state s for the returned value α. If the monadic action throws an exception, returns none instead.

🔗def
EStateM.adaptExcept.{u} {ε σ α ε' : Type u}
    (f : εε') (x : EStateM ε σ α)
    : EStateM ε' σ α

Map the exception type of a EStateM ε σ α by a function f : ε ε'.

🔗def
EStateM.fromStateM {ε σ α : Type}
    (x : StateM σ α) : EStateM ε σ α

7.5.8.1. State Rollback

Composing StateT and ExceptT in different orders causes exceptions to interact differently with state. In one ordering, state changes are rolled back when exceptions are caught; in the other, they persist. The latter option matches the semantics of most imperative programming languages, but the former is very useful for search-based problems. Often, some but not all state should be rolled back; this can be achieved by “sandwiching” ExceptT between two separate uses of StateT.

To avoid yet another layer of indirection via the use of StateT σ (EStateM ε σ') α, EStateM offers the EStateM.Backtrackable type class. This class specifies some part of the state that can be saved and restored. EStateM then arranges for the saving and restoring to take place around error handling.

🔗type class
EStateM.Backtrackable.{u}
    (δ : outParam (Type u)) (σ : Type u)
    : Type u

Auxiliary instance for saving/restoring the "backtrackable" part of the state. Here σ is the state, and δ is some subpart of it, and we have a getter and setter for it (a "lens" in the Haskell terminology).

Instance Constructor

EStateM.Backtrackable.mk.{u}

Methods

save : σδ

save s : δ retrieves a copy of the backtracking state out of the state.

restore : σδσ

restore (s : σ) (x : δ) : σ applies the old backtracking state x to the state s to get a backtracked state s'.

There is a universally-applicable instance of Backtrackable that neither saves nor restores anything. Because instance synthesis chooses the most recent instance first, the universal instance is used only if no other instance has been defined.

🔗def
EStateM.nonBacktrackable.{u} {σ : Type u}
    : EStateM.Backtrackable PUnit σ

Dummy default instance. This makes every σ trivially "backtrackable" by doing nothing on backtrack. Because this is the first declared instance of Backtrackable _ σ, it will be picked only if there are no other Backtrackable _ σ instances registered.

7.5.8.2. Implementations

These functions are typically not called directly, but rather are accessed through their corresponding type classes.

🔗def
EStateM.map.{u} {ε σ α β : Type u} (f : αβ)
    (x : EStateM ε σ α) : EStateM ε σ β

The map operation of the EStateM monad.

🔗def
EStateM.pure.{u} {ε σ α : Type u} (a : α)
    : EStateM ε σ α

The pure operation of the EStateM monad.

🔗def
EStateM.bind.{u} {ε σ α β : Type u}
    (x : EStateM ε σ α) (f : αEStateM ε σ β)
    : EStateM ε σ β

The bind operation of the EStateM monad.

🔗def
EStateM.orElse.{u} {ε σ α δ : Type u}
    [EStateM.Backtrackable δ σ]
    (x₁ : EStateM ε σ α)
    (x₂ : UnitEStateM ε σ α) : EStateM ε σ α

Implementation of orElse for EStateM where the state is Backtrackable.

🔗def
EStateM.orElse'.{u} {ε σ α δ : Type u}
  [EStateM.Backtrackable δ σ]
  (x₁ x₂ : EStateM ε σ α)
  (useFirstEx : Bool := true) : EStateM ε σ α

Alternative orElse operator that allows to select which exception should be used. The default is to use the first exception since the standard orElse uses the second.

🔗def
EStateM.seqRight.{u} {ε σ α β : Type u}
    (x : EStateM ε σ α)
    (y : UnitEStateM ε σ β) : EStateM ε σ β

The seqRight operation of the EStateM monad.

🔗def
EStateM.tryCatch.{u} {ε σ δ : Type u}
    [EStateM.Backtrackable δ σ] {α : Type u}
    (x : EStateM ε σ α)
    (handle : εEStateM ε σ α) : EStateM ε σ α

Implementation of tryCatch for EStateM where the state is Backtrackable.

🔗def
EStateM.throw.{u} {ε σ α : Type u} (e : ε)
    : EStateM ε σ α

The throw operation of the EStateM monad.

🔗def
EStateM.get.{u} {ε σ : Type u} : EStateM ε σ σ

The get operation of the EStateM monad.

🔗def
EStateM.set.{u} {ε σ : Type u} (s : σ)
    : EStateM ε σ PUnit

The set operation of the EStateM monad.

🔗def
EStateM.modifyGet.{u} {ε σ α : Type u}
    (f : σα × σ) : EStateM ε σ α

The modifyGet operation of the EStateM monad.